3\%

1. Determine I_{X}, assuming $I_{S R C}=1 \mathrm{~A}$ (Hint: write one KVL equation and one KCL equation).
A. 4 A
B. 2 A
C. 3 A

D. $1 A$
E. 5 A

Solution: Let the current through the 10Ω resistor be I_{Y}. From KVL around the mesh abcda: $5 I_{X}+5 I_{X}-10-10 I_{Y}=0$, which gives, $I_{Y}=I_{X}-1$. From KCL at node a, $I_{S R C}=I_{Y}+I_{X}$, or $I_{S R C}=$ $2 I_{X}-1$. It follows that $I_{X}=\left(I_{S R C}+1\right) / 2$.

Version 1: $I_{S R C}=1 \mathrm{~A}, I_{X}=(1+1) / 2=1 \mathrm{~A}$
Version 2: $I_{S R C}=1.5 \mathrm{~A}, I_{X}=(1.5+1) / 2=1.25 \mathrm{~A}$
Version 3: $I_{S R C}=2 \mathrm{~A}, I_{X}=(2+1) / 2=1.5 \mathrm{~A}$
Version 4: $I_{S R C}=2.5 \mathrm{~A}, I_{X}=(2.5+1) / 2=1.75 \mathrm{~A}$
Version 5: $I_{S R C}=3 \mathrm{~A}, I_{X}=(3+1) / 2=2 \mathrm{~A}$

3\%
2. In the circuit shown, the capacitance absorbs -200 VAR. Determine the average power dissipated in R if $R=5 \Omega$.
A. 57.1 W
B. 80 W
C. 44.4 W
D. 66.7 W

E. 50 W

Solution: $Q=-B V_{\mathrm{rms}}^{2}$, where $V_{r m s}$ is the rms voltage across R and C, and $B=-1 / X=1 / 2 \mathrm{~S}$.
Substituting, $-200=-\frac{1}{2} V_{\mathrm{rms}}^{2}$, and $V_{r m s}=20 \mathrm{~V}$. It follows that $P_{R}=\frac{V_{\mathrm{rms}}^{2}}{R}$.
Version 1: $R=5 \Omega, P_{R}=\frac{400}{5}=80 \mathrm{~W}$
Version 2: $R=6 \Omega, P_{R}=\frac{400}{6}=66.7 \mathrm{~W}$

Version 3: $R=7 \Omega, P_{R}=\frac{400}{7}=57.1 \mathrm{~W}$
Version 4: $R=8 \Omega, P_{R}=\frac{400}{8}=50 \mathrm{~W}$
Version 5: $R=9 \Omega, P_{R}=\frac{400}{9}=44.4 \mathrm{~W}$

3\%

3. Determine $\mathbf{I}_{\mathbf{x}}$ assuming $\mathbf{I}_{\mathbf{S R C}}=j \mathrm{~A}$.
A. $j 6 \mathrm{~A}$
B. $-j 3 \mathrm{~A}$
C. $j 3 \mathrm{~A}$
D. $-j 6 \mathrm{~A}$
E. $j 4 \mathrm{~A}$

Solution: The voltage across the $-j 3 \Omega$ capacitor is 6 V and the current through this capacitor, directed upwards is $j 2 \mathrm{~A}$. It follows that $\mathbf{I}_{\mathrm{x}}=\mathrm{I}_{\mathrm{SRC}}+j 2 \mathrm{~A}$.
Version 1: $\mathbf{I}_{\mathbf{S R C}}=j \mathrm{~A}, \mathrm{I}_{\mathrm{X}}=j+j 2=j 3 \mathrm{~A}$
Version 2: $\mathbf{I}_{\text {SRC }}=j 2 \mathrm{~A}, \mathrm{I}_{\mathrm{X}}=j 2+j 2=j 4 \mathrm{~A}$
Version 3: $\mathbf{I}_{\text {SRC }}=j 3 \mathrm{~A}, \mathbf{I}_{\mathrm{X}}=j 3+j 2=j 5 \mathrm{~A}$
Version 4: $\mathbf{I}_{\mathbf{S R C}}=j 4 \mathrm{~A}, \mathbf{I}_{\mathrm{X}}=j 4+j 2=j 6 \mathrm{~A}$
Version 5: $\mathbf{I}_{\mathbf{S R C}}=j 5 \mathrm{~A}, \mathbf{I}_{\mathrm{X}}=j 5+j 2=j 7 \mathrm{~A}$
3%
4. Determine the resistance between nodes a and b assuming that all resistances are 1Ω.
A. 4Ω
B. 2.4Ω
C. 3.2Ω
D. 1.6Ω
E. 0.8Ω

Solution: The resistances can be split into two halves in parallel, where the resistances in the middle become $2 R$. Applying $\Delta-Y$ transformation,

the resistances become as shown. It follows that $2 R_{a b}=0.5 R+R \| 1.5 R+0.5 R=R+0.6 R=$ 1.6R, so that $R_{a b}=0.8 R$.

Version 1: $R=1 \Omega, R_{a b}=0.8 \times 1=0.8 \Omega$
Version 2: $R=2 \Omega, R_{a b}=0.8 \times 2=1.6 \Omega$
Version 3: $R=3 \Omega, R_{a b}=0.8 \times 3=2.4 \Omega$
Version 4: $R=4 \Omega, R_{a b}=0.8 \times 4=3.2 \Omega$
Version 5: $R=5 \Omega, R_{a b}=0.8 \times 5=4 \Omega$

3\%

5. Two coils are tightly coupled to a high-permeability core, so that the leakage flux is negligibly small. If coil 1 has 100 turns and an inductance of 10 mH , and the mutual inductance is 12.5 mH , determine the number of turns of coil 2 .
A. 125
B. 250
C. 150
D. 175
E. 200

Solution: From the definitions of self and mutual inductance, with negligible leakage flux, $L_{1}=\frac{N_{1} \phi_{21}}{i_{1}}$ and $M=\frac{N_{2} \phi_{21}}{i_{1}}$. It follows that $N_{2}=\frac{M}{L_{1}} N_{1}=10 M$.
Version 1: $M=12.5 \mathrm{mH}, N_{2}=10 \times 12.5=125$ turns
Version 2: $M=15 \mathrm{mH}, N_{2}=10 \times 15=150$ turns
Version 3: $M=17.5 \mathrm{mH}, N_{2}=10 \times 17.5=175$ turns
Version 4: $M=20 \mathrm{mH}, N_{2}=10 \times 20=200$ turns
Version 5: $M=22.5 \mathrm{mH}, N_{2}=10 \times 22.5=225$ turns

3\%
6. Determine the inductance of coil 2 of the preceding problem.
A. 22.5 mH
B. 30.63 mH
C. 15.63 mH
D. 40 mH
E. 50.63 mH

Solution: Since the coils are tightly coupled to the core, $k=1$, so that $M^{2}=L_{1} L_{2}$, or $L_{2}=\frac{M^{2}}{L_{1}}=0.1 M^{2} \mathrm{mH}$. It also follows from the solution of the preceding problem that $N_{1}=\frac{M}{L_{2}} N_{2}$. Dividing, $L_{2}=L_{1}\left(\frac{N_{2}}{N_{1}}\right)^{2}=0.1 M^{2}$

Version 1: $M=12.5 \mathrm{mH}, L_{2}=0.1 \times(12.5)^{2}=15.625 \mathrm{mH}$
Version 2: $M=15 \mathrm{mH}, L_{2}=0.1 \times(15)^{2}=22.5 \mathrm{mH}$
Version 3: $M=17.5 \mathrm{mH}, L_{2}=0.1 \times(17.5)^{2}=30.625 \mathrm{mH}$
Version 4: $M=20 \mathrm{mH}, L_{2}=0.1 \times(20)^{2}=40 \mathrm{mH}$
Version 5: $M=22.5 \mathrm{mH}, L_{2}=0.1 \times(22.5)^{2}=50.625 \mathrm{mH}$

3\%

7. A D'Arsonval movement has a resistance of $R \Omega$ and a full-scale deflection of $100 \mu \mathrm{~A}$. Determine the shunt resistance that will result in a full-scale deflection of $150 \mu \mathrm{~A}$, assuming $R=50 \Omega$.
A. 150Ω
B. 200Ω
C. 300Ω
D. 100Ω
E. 250Ω

Solution: At full-scale deflection, the voltage drop across the movement and shunt is (R $\Omega) \times(100 \mu \mathrm{~A})=100 \mathrm{R} \mu \mathrm{V}$. The shunt has to pass $50 \mu \mathrm{~A}$, so its resistance is $R_{\text {shunt }}=100 R / 50=$ $2 R \Omega$.

Version 1: $R=50 \Omega, R_{\text {shunt }}=2 \times 50=100 \Omega$
Version 2: $R=75 \Omega, R_{\text {shunt }}=2 \times 75=150 \Omega$
Version 3: $R=100 \Omega, R_{\text {shunt }}=2 \times 100=200 \Omega$
Version 4: $R=125 \Omega, R_{\text {shunt }}=2 \times 125=250 \Omega$
Version 5: $R=150 \Omega, R_{\text {shunt }}=2 \times 150=300 \Omega$

3\%

8. When a 9950Ω resistance is connected in series with a D'Arsonval movement of unknown resistance and full-scale deflection current, a voltage of 1 V across the series combination gives a certain full-scale deflection. If an additional $10,000 \Omega$ is connected in series with the combination, 2 V are required for full-scale deflection. Determine the resistance of the D'Arsonval movement.
A. 150Ω
B. 100Ω
C. 75Ω
D. 125Ω
E. 50Ω

Solution: Let the resistance of the movement be R_{m}, its FSD current be $I_{\text {FSD }}$, and the FSD voltage with series resistance be $V_{\text {FSD }}$. Then $I_{\text {FSD }}\left(R+R_{m}\right)=V_{\text {FSD }}$, and $I_{\text {FSD }}(10,000+R+$ $\left.R_{m}\right)=2 V_{\text {FSD }}$. It follows that $R+R_{m}=10,000$, or $R_{m}=10,000-R$.

Version 1: $R=9950 \Omega, R_{m}=10,000-9950=50 \Omega$
Version 2: $R=9925 \Omega, R_{m}=10,000-9925=75 \Omega$
Version 3: $R=9900 \Omega, R_{m}=10,000-9900=100 \Omega$
Version 4: $R=9875 \Omega, R_{m}=10,000-9875=125 \Omega$
Version 5: $R=9850 \Omega, R_{m}=10,000-9850=150 \Omega$

3\%
9. Determine $L_{e q}$ if $L=1 \mathrm{H}$.
A. 6 H
B. 4 H
C. 8 H
D. 7 H
E. 5 H

Solution: Consider that a voltage \mathbf{V} is applied, causing a current \mathbf{I} to flow. $\mathbf{V}=j \omega \mathrm{l}[(2-1+1)$ $+(3-1-1)+(L+1-1)] ; L_{e q}=3+L$.
Version 1: $L=1 \mathrm{H}, L_{\text {eq }}=4 \mathrm{H}$
Version 2: $L=2 \mathrm{H}, L_{\text {eq }}=5 \mathrm{H}$
Version 3: $L=3 \mathrm{H}, L_{\text {eq }}=6 \mathrm{H}$
Version 4: $L=4 \mathrm{H}, L_{\text {eq }}=7 \mathrm{H}$
Version 5: $L=5 \mathrm{H}, L_{e q}=8 \mathrm{H}$.

3\%
10. Determine \mathbf{V}_{Th}, assuming $\mathbf{V}_{\mathrm{SRC}}=1 \angle 0^{\circ} \mathrm{V}$
A. $-1 \angle 0^{\circ} \mathrm{V}$
B. $1 \angle 0^{\circ} \mathrm{V}$
C. $-2 \angle 0^{\circ} \mathrm{V}$
D. $2 \angle 0^{\circ} \mathrm{V}$

E. $4 \angle 0^{\circ} \mathrm{V}$

Solution: On open circuit, no current flows. The primary voltage is $\mathrm{V}_{\mathrm{SRC}}$ as shown, and $\mathrm{V}_{\mathrm{Th}}=$ $-V_{\text {SRC }}$.

Version 1: $\mathrm{V}_{\mathrm{SRC}}=1 \angle 0^{\circ} \mathrm{V}, \mathrm{V}_{\mathrm{Th}}=-1 \angle 0^{\circ} \mathrm{V}$
Version 2: $\mathrm{V}_{\mathrm{SRC}}=2 \angle 0^{\circ} \mathrm{V}, \mathrm{V}_{\mathrm{Th}}=-2 \angle 0^{\circ} \mathrm{V}$
Version 3: $\mathrm{V}_{\mathrm{SRC}}=3 \angle 0^{\circ} \mathrm{V}, \mathrm{V}_{\mathrm{Th}}=-3 \angle 0^{\circ} \mathrm{V}$
Version 4: $\mathrm{V}_{\mathrm{SRC}}=4 \angle 0^{\circ} \mathrm{V}, \mathrm{V}_{\mathrm{Th}}=-4 \angle 0^{\circ} \mathrm{V}$
Version 5: $\mathrm{V}_{\mathrm{SRC}}=5 \angle 0^{\circ} \mathrm{V}, \mathrm{V}_{\mathrm{Th}}=-5 \angle 0^{\circ} \mathrm{V}$

3\%
11. Determine Z_{L} for maximum average power delivered to it if $R=5 \Omega$ and $\mathbf{I}_{\mathbf{x}}=k \angle-45^{\circ}$
where $k=\sqrt{2}$ A rms.
A. $10+j 10 \Omega$
B. $5+j 5 \Omega$
C. $5-j 5 \Omega$
D. $10-j 10 \Omega$

E. $15-j 15 \Omega$

Solution: $Z_{T h}$ is $(R+j 5) \Omega$. Hence, Z_{L} for maximum power transfer is $(R-j 5) \Omega$.
Version 1: $R=5 \Omega, Z_{L \max }=(5-j 5) \Omega$
Version 2: $R=6 \Omega, Z_{L \max }=(6-j 5) \Omega$
Version 3: $R=7 \Omega, Z_{L \max }=(7-j 5) \Omega$
Version 4: $R=8 \Omega, Z_{L \max }=(8-j 5) \Omega$
Version 5: $R=9 \Omega, Z_{L \max }=(9-j 5) \Omega$

3\%

12. Determine the maximum average power delivered to Z_{L} in Problem 11, assuming that R $=5 \Omega$ and I_{x} is as in Problem 11.
A. 90 W
B. 200 W
C. 320 W
D. 180 W
E. 245 W

Solution: $V_{T h}$ as seen by Z_{L} is determined from superposition as $\frac{j 10}{j 10+j 10} \times 100 \angle 0^{\circ}+$ $(5+j 10 \| j 10) \mathrm{I}_{\mathrm{x}}=50 \angle 0^{\circ}+5(1+j) \mathrm{I}_{\mathrm{x}}=50 \angle 0^{\circ}+\left(5 \sqrt{2} \angle 45^{\circ}\right) \times k \angle-45^{\circ}=50+5 \sqrt{2} k ;$
$P_{L \text { max }}=\frac{(50+5 \sqrt{2} k)^{2}}{4 R_{T h}}=\frac{(50+5 \sqrt{2} k)^{2}}{20}$
Version 1: $k=\sqrt{2} A, P_{L \max }=\frac{(50+5 \sqrt{2} \times \sqrt{2})^{2}}{20}=\frac{(60)^{2}}{20}=180 \mathrm{~W}$
Version 2: $k=2 \sqrt{2} A, P_{L \max }=\frac{(50+5 \sqrt{2} \times 2 \sqrt{2})^{2}}{20}=\frac{(70)^{2}}{20}=245 \mathrm{~W}$
Version 3: $k=3 \sqrt{2} A, P_{L \max }=\frac{(50+5 \sqrt{2} \times 3 \sqrt{2})^{2}}{20}=\frac{(80)^{2}}{20}=320 \mathrm{~W}$
Version 4: $k=4 \sqrt{2} A, P_{L \max }=\frac{(50+5 \sqrt{2} \times 4 \sqrt{2})^{2}}{20}=\frac{(90)^{2}}{20}=405 \mathrm{~W}$
Version 5: $k=5 \sqrt{2} \mathrm{~A}, P_{L \max }=\frac{(50+5 \sqrt{2} \times 5 \sqrt{2})^{2}}{20}=\frac{(100)^{2}}{20}=500 \mathrm{~W}$

3\%
13. Load L_{1} absorbs 15 kVA at 0.6 p.f. lagging, whereas Load L_{2} absorbs 4.8 kW at 0.8 p.f. leading. If $\mathbf{V}_{\mathbf{S R C}}=200 \angle 0^{\circ} \mathrm{V}$ rms at $f=50 \mathrm{~Hz}$, determine the capacitor that must be connected in parallel with L_{1} and L_{2} to have maximum
 magnitude of current through the source.
A. 0.67 mF
B. 0.55 mF
C. 0.34 mF
D. 0.46 mF
E. 1.24 mF

Solution: The reactive power absorbed by L_{1} is $15 \times 0.8 \mathrm{kVAR}=12 \mathrm{kVAR}$, whereas the reactive power absorbed by L_{2} is $-\frac{4.8}{0.8} \times 0.6=-3.6 \mathrm{kVAR}$. For maximum magnitude of source current, the p.f. should be unity. The capacitor must add a reactive power of -(12 3.6) $=-8400$ VAR. hence, $-8400=-\omega C \times\left|\mathbf{V}_{\mathrm{SRC}}\right|^{2}$, or $C=\frac{8400}{100 \pi\left|\mathrm{~V}_{\mathrm{SRC}}\right|^{2}}=\frac{84}{\pi\left|\mathrm{~V}_{\mathrm{SRC}}\right|^{2}}$.

Version 1: $\left|V_{\text {SRC }}\right|=200 \mathrm{~V}, C=\frac{84}{\pi(200)^{2}} \equiv 0.67 \mathrm{mF}$
Version 2: $\left|\mathbf{V}_{\text {SRC }}\right|=220 \mathrm{~V}, \mathrm{C}=\frac{84}{\pi(220)^{2}} \equiv 0.55 \mathrm{mF}$
Version 3: $\left|\mathrm{V}_{\text {SRC }}\right|=240 \mathrm{~V}, C=\frac{84}{\pi(240)^{2}} \equiv 0.46 \mathrm{mF}$
Version 4: $\left|\mathbf{V}_{\text {SRC }}\right|=260 \mathrm{~V}, C=\frac{84}{\pi(200)^{2}} \equiv 0.40 \mathrm{mF}$
Version 5: $\left|\mathrm{V}_{\mathrm{SRC}}\right|=280 \mathrm{~V}, \mathrm{C}=\frac{84}{\pi(200)^{2}} \equiv 0.34 \mathrm{mF}$

3\%
14. A periodic current is shown, where over a period,

$$
\begin{array}{lr}
i=6+A \sin 2 t \quad 0 \leq t \leq \pi \\
i=-4+A \sin 2(t-\pi) \quad \pi 0 \leq \mathrm{t} \leq 2 \pi
\end{array}
$$

Determine the rms value of i if $A=1 \mathrm{~A}$.
A. 5.83 A
B. 5.15 A

C. 6.20 A
D. 5.29 A
E. 5.52 A

Solution: The waveform consists of three components: i) a dc component of 1 A , ii) a square wave of 5 V amplitude, and iii) a sinusoidal wave of amplitude A. It follows that the rms value is $I=\sqrt{1^{2}+5^{2}+A^{2} / 2}=\sqrt{26+A^{2} / 2} \mathrm{~A}$

Version 1: $A=1 ; I=\sqrt{26+A^{2} / 2}=\sqrt{26.5}=5.15 \mathrm{~A}$
Version 2: $A=2 ; I=\sqrt{26+A^{2} / 2}=\sqrt{28}=5.29 \mathrm{~A}$
Version 3: $A=3 ; I=\sqrt{26+A^{2} / 2}=\sqrt{30.5}=5.52 \mathrm{~A}$
Version 4: $A=4 ; I=\sqrt{26+A^{2} / 2}=\sqrt{34}=5.83 \mathrm{~A}$
Version 5: $A=5 ; I=\sqrt{26+A^{2} / 2}=\sqrt{38.5}=6.20 \mathrm{~A}$.

3\%
15. The current waveform of the preceding problem is applied to a 2Ω resistor in parallel with a very large capacitor. Determine the voltage across the parallel combination.
A. 2.5 V
B. 2 V
C. 3 V
D. 4 V
E. 3.5 V

Solution: The ac voltage will be negligibly small. The dc voltage is the dc component of current multiplied by R, or $V=1 \times R$.
Version 1: $R=2 \Omega ; V=R=2 V$
Version 2: $R=2.5 \Omega ; V=R=2.5 \mathrm{~V}$
Version 3: $R=3 \Omega ; V=R=3 V$
Version 4: $R=3.5 \Omega ; V=R=3.5 \mathrm{~V}$
Version 5: $R=4 \Omega ; V=R=4 \mathrm{~V}$

11\%
16. The period of a periodic function $f(t)$ is defined as:

$$
\begin{array}{ll}
f(t)=\cos (t+\pi)-2, & -\pi<t<-\pi / 2 \\
f(t)=-\cos (t)+k, & -\pi / 2<t<+\pi / 2 \\
f(t)=\cos (t-\pi)-2, & \pi / 2<t<\pi
\end{array}
$$

Derive the trigonometric Fourier series expansion of $f(t)$, assuming $k=3$.

Solution:

$a_{0}=\frac{1}{\pi}\left[\int_{0}^{\pi / 2}(-\cos t+k) d t+\int_{\pi / 2}^{\pi}(\cos (t-\pi)-2) d t\right]=$
$\frac{1}{\pi}\left[k \int_{0}^{\pi / 2} d t-2 \int_{\pi / 2}^{\pi} d t-\int_{0}^{\pi / 2} \cos t d t-\int_{\pi / 2}^{\pi} \cos t d t\right]=\frac{1}{\pi}\left[k \int_{0}^{\pi / 2} d t-2 \int_{\pi / 2}^{\pi} d t=\frac{1}{\pi}\left[\frac{k \pi}{2}-\pi\right]=\frac{k}{2}-1\right.$.
$a_{n}=\frac{2}{\pi}\left[\int_{0}^{\pi / 2}(-\cos t+k) \cos n t d t+\int_{\pi / 2}^{\pi}(\cos (t-\pi)-2) \cos n t d t\right]=$
$\frac{2}{\pi}\left[-\int_{0}^{\pi} \cos t \cos n t d t+\int_{0}^{\pi / 2} k \cos n t d t-\int_{\pi / 2}^{\pi} 2 \cos n t d t\right]=$
$\frac{2}{\pi}\left[-\frac{1}{2} \int_{0}^{\pi} \cos (n-1) t d t-\frac{1}{2} \int_{0}^{\pi} \cos (n+1) t d t+k \int_{0}^{\pi / 2} \cos n t d t-2 \int_{\pi / 2}^{\pi} \cos n t d t\right]=$
$-\frac{1}{\pi}\left[\frac{\sin (n-1) t}{n-1}+\frac{\sin (n+1) t}{n+1}\right]_{0}^{\pi}+\frac{2 k}{n \pi}[\sin n t]_{0}^{\pi / 2}-\frac{4}{n \pi}[\sin n t]_{\pi / 2}^{\pi}=$
$0-0+\frac{2 k}{n \pi} \sin \frac{n \pi}{2}-0-0+\frac{4}{n \pi} \sin \frac{n \pi}{2}=\frac{2(k+2)}{n \pi} \sin \frac{n \pi}{2}$. a_{n} is zero for even values, and the
odd harmonics alternate in sign. Thus,
$f(t)=\left(\frac{k}{2}-1\right) \frac{1}{2}+\frac{2(k+2)}{\pi}\left(\cos t-\frac{1}{3} \cos 3 t+\frac{1}{5} \cos 5 t-\frac{1}{7} \cos 7 t+\ldots\right)$
Version 1: $k=3, f(t)=\frac{1}{2}+\frac{10}{\pi}\left(\cos t-\frac{1}{3} \cos 3 t+\frac{1}{5} \cos 5 t-\frac{1}{7} \cos 7 t+\ldots\right)$
Version 2: $k=4, f(t)=1+\frac{12}{\pi}\left(\cos t-\frac{1}{3} \cos 3 t+\frac{1}{5} \cos 5 t-\frac{1}{7} \cos 7 t+\ldots\right)$
Version 3: $k=5, f(t)=\frac{3}{2}+\frac{14}{\pi}\left(\cos t-\frac{1}{3} \cos 3 t+\frac{1}{5} \cos 5 t-\frac{1}{7} \cos 7 t+\ldots\right)$
Version 4: $k=6, f(t)=2+\frac{16}{\pi}\left(\cos t-\frac{1}{3} \cos 3 t+\frac{1}{5} \cos 5 t-\frac{1}{7} \cos 7 t+\ldots\right)$
Version 5: $k=7, f(t)=\frac{5}{2}+\frac{18}{\pi}\left(\cos t-\frac{1}{3} \cos 3 t+\frac{1}{5} \cos 5 t-\frac{1}{7} \cos 7 t+\ldots\right)$

11\%
17. Given $v_{S R C}=\cos t$ and $i_{S R C}=\sin 2 t \mathrm{~A}$.
6% (a) Derive the expression for i_{x} in the time domain.

5\% (b) Determine the power dissipated in the resistor.

Solution: (a) Let the amplitude of $v_{S R C}$ and $i_{S R C}$ be K. With the current source replaced by an open circuit, $\mathrm{I}_{\times 1}=\frac{K \angle 0^{\circ}}{1} \frac{1}{1+j}=\frac{K}{2}(1-j) ; i_{\times 1}=\frac{K}{\sqrt{2}} \cos \left(t-45^{\circ}\right) A$. With the current source replaced by a short circuit, $\mathbf{I}_{\times 2}=K \angle 0^{\circ} \frac{j 2}{1+j 2}=\frac{2 K}{\sqrt{5}} \angle\left(90^{\circ}-\tan ^{-1} 2\right) ; i_{x 2}=\frac{2 K}{\sqrt{5}} \sin \left(2 t+26.57^{\circ}\right)$
A. Hence, $i_{x}=\frac{K}{\sqrt{2}} \cos \left(t-45^{\circ}\right)+\frac{2 K}{\sqrt{5}} \sin \left(2 t+26.57^{\circ}\right)$ A.
(b) Power dissipated is $P=\frac{1}{2}\left(\frac{K^{2}}{2}+\frac{4 K^{2}}{5}\right)=0.65 K^{2} \mathrm{~W}$.

Version 1: $K=1,0.71 \cos \left(t-45^{\circ}\right)+0.89 \sin \left(2 t+26.57^{\circ}\right) \mathrm{A}, P=0.65 \mathrm{~W}$
Version 2: $K=2,1.14 \cos \left(t-45^{\circ}\right)+1.79 \sin \left(2 t+26.57^{\circ}\right) \mathrm{A}, P=2.60 \mathrm{~W}$
Version 3: $K=3,2.12 \cos \left(t-45^{\circ}\right)+2.68 \sin \left(2 t+26.57^{\circ}\right) \mathrm{A}, P=5.85 \mathrm{~W}$
Version 4: $K=4,2.83 \cos \left(t-45^{\circ}\right)+3.58 \sin \left(2 t+26.57^{\circ}\right) \mathrm{A}, P=10.4 \mathrm{~W}$
Version 5: $K=5,3.54 \cos \left(t-45^{\circ}\right)+4.47 \sin \left(2 t+26.57^{\circ}\right) \mathrm{A}, P=16.25 \mathrm{~W}$
18. Given the circuit shown, with $a=1$.

3\% (a) Determine the current in the capacitor
2\% (b) Replace the capacitor by a current source, in accordance with the substitution theorem

3\% (c) Rearrange the current source as two current sources across the transformer
 windings

3\% (d) Determine $\mathbf{I}_{\text {sRC }}$.
Solution: (a) The voltage across the capacitor is $5(1+a) \mathrm{V}$. The current through the capacitor is $j 5(1+a)$ A directed from primary to secondary.
(b)

(d) It follows that $I_{\text {SRC }}=j 5(a+1)^{2} A$.

Version 1: $a=2, I_{\text {SRC }}=j 5(2+1)^{2}=j 45 \mathrm{~A}$
Version 2: $a=3, I_{\text {SRC }}=j 5(3+1)^{2}=j 80 \mathrm{~A}$
Version 3: $a=4, I_{\text {SRC }}=j 5(4+1)^{2}=j 125 \mathrm{~A}$
Version 4: $a=5, I_{\text {SRC }}=j 5(5+1)^{2}=j 180 \mathrm{~A}$
Version 5: $a=6, I_{\text {SRC }}=j 5(6+1)^{2}=j 245 \mathrm{~A}$

11\%
19. Determine X and R for maximum power transfer to R and calculate this power.

Assume $\mathrm{V}_{\text {SRC }}=4 \angle 0^{\circ} \mathrm{V} \mathrm{rms}$.
(c)

)

Solution: On open circuit, $\mathbf{V}_{\mathbf{T H}}=\mathbf{V}=\mathbf{V}_{\text {SRc }}$. On short circuit, $\mathbf{V}=0$ and $\mathbf{I}_{\mathbf{N}}=\mathbf{I}=\frac{\mathbf{V}_{\text {SRC }}}{5(1+j)} \cdot Y_{N}=$ $\frac{1}{5(1+j)}=0.1(1-j) \mathrm{S}$. For maximum power transfer, $G_{L}=0.1 \mathrm{~S}$, or $R=10 \Omega$, and $B=0.1 \mathrm{~S}$, or $X=-10 \Omega$.

Under conditions of maximum power
 transfer, the current in R is $0.5\left|I_{\mathrm{N}}\right|=\frac{0.5\left|\mathrm{~V}_{\text {SRC }}\right|}{10}$ and the power transferred is $\frac{0.25\left|\mathbf{V}_{\text {SRC }}\right|^{2}}{10}=$ $\frac{\left|\mathrm{V}_{\mathrm{SRC}}\right|^{2}}{40} \mathrm{~W}$.

Version 1: $\mathrm{V}_{\mathrm{SRC}}=4 \angle 0^{\circ} \mathrm{rms}, P=\frac{16}{40}=0.4 \mathrm{~W}$
Version 2: $\mathrm{V}_{\mathrm{SRC}}=5 \angle 0^{\circ} \mathrm{rms}, P=\frac{25}{40}=0.625 \mathrm{~W}$

Version 3: $\mathrm{V}_{\mathrm{SRC}}=6 \angle 0^{\circ} \mathrm{rms}, P=\frac{36}{40}=0.9 \mathrm{~W}$
Version 4: $\mathrm{V}_{\mathrm{SRC}}=7 \angle 0^{\circ} \mathrm{rms}, P=\frac{49}{40}=1.225 \mathrm{~W}$
Version 5: $\mathrm{V}_{\mathrm{SRC}}=8 \angle 0^{\circ} \mathrm{rms}, P=\frac{64}{40}=1.6 \mathrm{~W}$.
20. Determine the complex power delivered by each source given that $\mathbf{V}_{\mathrm{SRC}}=5 \cos \omega t, \mathrm{I}_{\mathrm{SRC}}=-2 \sin \omega t$, and assuming $Z_{L}=k(1-j)$ where $k=1$.

Solution: The currents and voltages are as shown.
Equating mmfs: $100 \times 2 \angle 90^{\circ}+200 \mathrm{I}_{\mathrm{L}}=0$, or $j 2=-2 \mathrm{I}_{\mathrm{L}}$, and $\mathbf{I}_{\mathrm{L}}=-j \mathrm{~A}, \mathbf{I}_{\mathbf{1}}=\mathbf{I}_{\mathrm{L}}-j 2=-j 3 \mathrm{~A}$.
$\mathbf{V}_{\mathbf{L}}=Z_{\mathbf{L}} \mathbf{L}_{\mathbf{L}}=-j k(1-j)=-k(1+j) \mathrm{V} . \mathbf{V}_{\mathbf{2}}=\mathbf{V}_{\mathbf{L}}-5=-(k+$ 5) $-j k . \mathbf{V}_{1}=\mathrm{V}_{2} / 2=-(k+5) / 2-j k / 2 \mathrm{~V} . \mathrm{V}_{\mathbf{I}}=5-\mathrm{V}_{1}=$ $(15+k) / 2+j k / 2 \mathrm{~V}$.

Power delivered by voltage source $=S_{v}=\frac{V_{\text {stc }}}{\sqrt{2}} \frac{l_{1}^{*}}{\sqrt{2}}=\frac{1}{2}(5)(j 3)=\frac{j 15}{2}$ VA

Power delivered by current source $S_{l}=$
$\frac{\mathrm{V}_{1}}{\sqrt{2}} \frac{{ }_{\text {SRC }}^{*}}{\sqrt{2}}=\frac{1}{2}\left(\frac{15+k}{2}+\frac{j k}{2}\right)(-j 2)=$
$\frac{1}{2}(k-j(15+k)) V A$
Total power delivered by sources $=$
$\left.\frac{1}{2}(j 15+k-j 15-j k)\right)=\frac{k}{2}(1-j)$
As a check, $S_{L}=$
$\frac{V_{L m}}{\sqrt{2}} \frac{I_{L m}^{*}}{\sqrt{2}}=\frac{1}{2}(-j k(1-j))(j)=\frac{k}{2}(1-j) \mathrm{VA}$.

Version 1: $k=1, S_{v}=j 7.5 \mathrm{VA} ; S_{I}=0.5-j 8 \mathrm{VA}$
Version 2: $k=2, S_{v}=j 7.5 \mathrm{VA} ; S_{I}=1-j 8.5 \mathrm{VA}$
Version 3: $k=3, S_{v}=j 7.5 \mathrm{VA} ; S_{I}=1.5-j 9 \mathrm{VA}$
Version 4: $k=4, S_{v}=j 7.5 \mathrm{VA} ; S_{I}=2-j 9.5 \mathrm{VA}$
Version 5: $k=5, S_{v}=j 7.5 \mathrm{VA} ; S_{I}=2.5-j 10 \mathrm{VA}$

