3%

- 1. Determine I_X , assuming $I_{SRC} = 1$ A (Hint: write one KVL equation and one KCL equation).
 - A. 4 A
 - B. 2 A
 - C. 3 A
 - D. 1 A
 - E. 5 A

 $I_{SRC} + I_{Q} + I_$

Solution: Let the current through the 10 Ω resistor be I_Y . From KVL around the mesh abcda: $5I_X + 5I_X - 10 - 10I_Y = 0$, which gives, $I_Y = I_X - 1$. From KCL at node a, $I_{SRC} = I_Y + I_X$, or $I_{SRC} = 2I_X - 1$. It follows that $I_X = (I_{SRC} + 1)/2$. **Version 1:** $I_{SRC} = 1$ A, $I_X = (1 + 1)/2 = 1$ A **Version 2:** $I_{SRC} = 1.5$ A, $I_X = (1.5 + 1)/2 = 1.25$ A **Version 3:** $I_{SRC} = 2$ A, $I_X = (2 + 1)/2 = 1.5$ A

Version 4: $I_{SRC} = 2.5 \text{ A}, I_X = (2.5 + 1)/2 = 1.75 \text{ A}$

Version 5: $I_{SRC} = 3 \text{ A}, I_X = (3 + 1)/2 = 2 \text{ A}$

3%

- 2. In the circuit shown, the capacitance absorbs -200 VAR. Determine the average power dissipated in *R* if $R = 5 \Omega$.
 - A. 57.1 W
 - B. 80 W
 - C. 44.4 W
 - D. 66.7 W
 - E. 50 W

Solution: $Q = -BV_{rms}^2$, where V_{rms} is the rms voltage across R and C, and B = -1/X = 1/2 S. Substituting, $-200 = -\frac{1}{2}V_{rms}^2$, and $V_{rms} = 20$ V. It follows that $P_R = \frac{V_{rms}^2}{R}$. **Version 1:** $R = 5 \Omega$, $P_R = \frac{400}{5} = 80$ W

Version 2: $R = 6 \Omega$, $P_R = \frac{400}{6} = 66.7 \text{ W}$

Version 3: $R = 7 \Omega$, $P_R = \frac{400}{7} = 57.1 \text{ W}$ Version 4: $R = 8 \Omega$, $P_R = \frac{400}{8} = 50 \text{ W}$ Version 5: $R = 9 \Omega$, $P_R = \frac{400}{9} = 44.4 \text{ W}$

3%

- 3. Determine I_X assuming $I_{SRC} = j A$.
 - A. *j*6 A
 - В. *-ј*ЗА
 - С. *ј*ЗА
 - D. *-j*6 A
 - E. *j*4 A

Solution: The voltage across the $-j3 \Omega$ capacitor is 6 V and

the current through this capacitor, directed upwards is $j^2 A$. It follows that $I_X = I_{SRC} + j^2 A$.

Version 1: $I_{SRC} = j A$, $I_X = j + j^2 = j^3 A$ Version 2: $I_{SRC} = j^2 A$, $I_X = j^2 + j^2 = j^4 A$ Version 3: $I_{SRC} = j^3 A$, $I_X = j^3 + j^2 = j^5 A$ Version 4: $I_{SRC} = j^4 A$, $I_X = j^4 + j^2 = j^6 A$ Version 5: $I_{SRC} = j^5 A$, $I_X = j^5 + j^2 = j^7 A$

3%

- Determine the resistance between nodes a and b assuming that all resistances are 1 Ω.
 - A. 4Ω
 - Β. 2.4 Ω
 - C. 3.2 Ω
 - D. 1.6 Ω
 - Ε. 0.8 Ω

Solution: The resistances can be split into two halves in parallel, where the resistances in the middle become 2R. Applying Δ -Y transformation,

2

the resistances become as shown. It follows that $2R_{ab} = 0.5R + R||1.5R + 0.5R = R + 0.6R =$

1.6*R*, so that $R_{ab} = 0.8R$.

Version 1: $R = 1 \Omega$, $R_{ab} = 0.8 \times 1 = 0.8 \Omega$ Version 2: $R = 2 \Omega$, $R_{ab} = 0.8 \times 2 = 1.6 \Omega$ Version 3: $R = 3 \Omega$, $R_{ab} = 0.8 \times 3 = 2.4 \Omega$ Version 4: $R = 4 \Omega$, $R_{ab} = 0.8 \times 4 = 3.2 \Omega$ Version 5: $R = 5 \Omega$, $R_{ab} = 0.8 \times 5 = 4 \Omega$

3%

- 5. Two coils are tightly coupled to a high-permeability core, so that the leakage flux is negligibly small. If coil 1 has 100 turns and an inductance of 10 mH, and the mutual inductance is 12.5 mH, determine the number of turns of coil 2.
 - A. 125
 - B. 250
 - C. 150
 - D. 175
 - E. 200

Solution: From the definitions of self and mutual inductance, with negligible leakage flux,

 $L_1 = \frac{N_1\phi_{21}}{i_1}$ and $M = \frac{N_2\phi_{21}}{i_1}$. It follows that $N_2 = \frac{M}{L_1}N_1 = 10M$. Version 1: M = 12.5 mH, $N_2 = 10 \times 12.5 = 125$ turns Version 2: M = 15 mH, $N_2 = 10 \times 15 = 150$ turns Version 3: M = 17.5 mH, $N_2 = 10 \times 17.5 = 175$ turns

Version 4: *M* = 20 mH, *N*₂ = 10×20 = 200 turns

Version 5: *M* = 22.5 mH, *N*₂ = 10×22.5 = 225 turns

3%

- 6. Determine the inductance of coil 2 of the preceding problem.
 - A. 22.5 mH
 - B. 30.63 mH
 - C. 15.63 mH
 - D. 40 mH
 - E. 50.63 mH

Solution: Since the coils are tightly coupled to the core, k = 1, so that $M^2 = L_1 L_2$, or

 $L_2 = \frac{M^2}{L_1} = 0.1M^2$ mH. It also follows from the solution of the preceding problem that

$$N_1 = \frac{M}{L_2} N_2$$
. Dividing, $L_2 = L_1 \left(\frac{N_2}{N_1}\right)^2 = 0.1 M^2$

Version 1: M = 12.5 mH, $L_2 = 0.1 \times (12.5)^2 = 15.625$ mH Version 2: M = 15 mH, $L_2 = 0.1 \times (15)^2 = 22.5$ mH Version 3: M = 17.5 mH, $L_2 = 0.1 \times (17.5)^2 = 30.625$ mH Version 4: M = 20 mH, $L_2 = 0.1 \times (20)^2 = 40$ mH Version 5: M = 22.5 mH, $L_2 = 0.1 \times (22.5)^2 = 50.625$ mH

3%

- 7. A D'Arsonval movement has a resistance of $R \Omega$ and a full-scale deflection of 100 μ A. Determine the shunt resistance that will result in a full-scale deflection of 150 μ A, assuming $R = 50 \Omega$.
 - Α. 150 Ω
 - B. 200 Ω
 - **C**. 300 Ω
 - D. 100 Ω
 - E. 250 Ω

Solution: At full-scale deflection, the voltage drop across the movement and shunt is ($R = \Omega$)×(100 µA) = 100R µV. The shunt has to pass 50 µA, so its resistance is $R_{\text{shunt}} = 100R/50 = 2R \Omega$.

Version 1: $R = 50 \Omega$, $R_{shunt} = 2 \times 50 = 100 \Omega$ Version 2: $R = 75 \Omega$, $R_{shunt} = 2 \times 75 = 150 \Omega$ Version 3: $R = 100 \Omega$, $R_{shunt} = 2 \times 100 = 200 \Omega$ Version 4: $R = 125 \Omega$, $R_{shunt} = 2 \times 125 = 250 \Omega$ Version 5: $R = 150 \Omega$, $R_{shunt} = 2 \times 150 = 300 \Omega$

3%

8. When a 9950 Ω resistance is connected in series with a D'Arsonval movement of unknown resistance and full-scale deflection current, a voltage of 1 V across the series combination gives a certain full-scale deflection. If an additional 10,000 Ω is connected in series with the combination, 2 V are required for full-scale deflection. Determine the resistance of the D'Arsonval movement.

- Α. 150 Ω
- **B**. 100 Ω
- C. 75 Ω
- D. 125Ω
- E. 50 Ω

Solution: Let the resistance of the movement be R_m , its FSD current be I_{FSD} , and the FSD voltage with series resistance be V_{FSD} . Then $I_{FSD}(R + R_m) = V_{FSD}$, and $I_{FSD}(10,000 + R + R_m) = 2V_{FSD}$. It follows that $R + R_m = 10,000$, or $R_m = 10,000 - R$. **Version 1:** $R = 9950 \Omega$, $R_m = 10,000 - 9950 = 50 \Omega$ **Version 2:** $R = 9925 \Omega$, $R_m = 10,000 - 9925 = 75 \Omega$ **Version 3:** $R = 9900 \Omega$, $R_m = 10,000 - 9900 = 100 \Omega$ **Version 4:** $R = 9875 \Omega$, $R_m = 10,000 - 9875 = 125 \Omega$ **Version 5:** $R = 9850 \Omega$, $R_m = 10,000 - 9850 = 150 \Omega$

3%

Solution: Consider that a voltage V is applied, causing a current I to flow. $V = j\omega I[(2 - 1 + 1) + (3 - 1 - 1) + (L + 1 - 1)]; L_{eq} = 3 + L.$

Version 1: L = 1 H, $L_{eq} = 4$ H Version 2: L = 2 H, $L_{eq} = 5$ H Version 3: L = 3 H, $L_{eq} = 6$ H Version 4: L = 4 H, $L_{eq} = 7$ H Version 5: L = 5 H, $L_{eq} = 8$ H.

3%

10. Determine V_{Th} , assuming $V_{SRC} = 1 \angle 0^{\circ} V$

- A. -1∠0° V
- B. 1∠0° V
- C. -2∠0° V
- D. 2∠0° V
- E. 4∠0° V

Solution: On open circuit, no current flows. The primary voltage is V_{SRC} as shown, and $V_{Th} = -V_{SRC}$.

Version 1: $V_{SRC} = 1 \angle 0^{\circ} \vee$, $V_{Th} = -1 \angle 0^{\circ} \vee$ Version 2: $V_{SRC} = 2 \angle 0^{\circ} \vee$, $V_{Th} = -2 \angle 0^{\circ} \vee$ Version 3: $V_{SRC} = 3 \angle 0^{\circ} \vee$, $V_{Th} = -3 \angle 0^{\circ} \vee$ Version 4: $V_{SRC} = 4 \angle 0^{\circ} \vee$, $V_{Th} = -4 \angle 0^{\circ} \vee$ Version 5: $V_{SRC} = 5 \angle 0^{\circ} \vee$, $V_{Th} = -5 \angle 0^{\circ} \vee$

3%

- 11. Determine Z_L for maximum average power delivered to it if $R = 5 \Omega$ and $I_X = k \angle -45^\circ$ where $k = \sqrt{2}$ A rms.
 - A. 10 + *j*10 Ω
 - B. 5+*j*5Ω
 - C. 5 *j*5 Ω
 - D. 10 *j*10 Ω
 - E. 15 *j*15 Ω

Solution: Z_{Th} is $(R + j5) \Omega$. Hence, Z_L for maximum power transfer is $(R - j5) \Omega$. Version 1: $R = 5 \Omega$, $Z_{Lmax} = (5 - j5) \Omega$ Version 2: $R = 6 \Omega$, $Z_{Lmax} = (6 - j5) \Omega$ Version 3: $R = 7 \Omega$, $Z_{Lmax} = (7 - j5) \Omega$ Version 4: $R = 8 \Omega$, $Z_{Lmax} = (8 - j5) \Omega$ Version 5: $R = 9 \Omega$, $Z_{Lmax} = (9 - j5) \Omega$

3%

12. Determine the maximum average power delivered to Z_L in Problem 11, assuming that R

- = 5 Ω and I_X is as in Problem 11.
- A. 90 W
- B. 200 W
- C. 320 W
- D. 180 W
- E. 245 W

Solution: V_{Th} as seen by Z_L is determined from superposition as $\frac{j10}{j10+j10} \times 100 \angle 0^\circ$
$(5+j10 j10)\mathbf{I}_{\mathbf{X}} = 50 \angle 0^{\circ} + 5(1+j)\mathbf{I}_{\mathbf{X}} = 50 \angle 0^{\circ} + (5\sqrt{2} \angle 45^{\circ}) \times k \angle -45^{\circ} = 50 + 5\sqrt{2}k;$
$P_{L\max} = \frac{\left(50 + 5\sqrt{2}k\right)^2}{4R_{Th}} = \frac{\left(50 + 5\sqrt{2}k\right)^2}{20}$
Version 1: $k = \sqrt{2}$ A, $P_{Lmax} = \frac{(50 + 5\sqrt{2} \times \sqrt{2})^2}{20} = \frac{(60)^2}{20} = 180$ W
Version 2: $k = 2\sqrt{2}$ A, $P_{Lmax} = \frac{(50 + 5\sqrt{2} \times 2\sqrt{2})^2}{20} = \frac{(70)^2}{20} = 245$ W
Version 3: $k = 3\sqrt{2}$ A, $P_{Lmax} = \frac{\left(50 + 5\sqrt{2} \times 3\sqrt{2}\right)^2}{20} = \frac{\left(80\right)^2}{20} = 320$ W
Version 4: $k = 4\sqrt{2}$ A, $P_{Lmax} = \frac{(50 + 5\sqrt{2} \times 4\sqrt{2})^2}{20} = \frac{(90)^2}{20} = 405$ W
Version 5: $k = 5\sqrt{2}$ A, $P_{L_{\text{max}}} = \frac{(50 + 5\sqrt{2} \times 5\sqrt{2})^2}{20} = \frac{(100)^2}{20} = 500 \text{ W}$

3%

13. Load L_1 absorbs 15 kVA at 0.6 p.f. lagging, whereas Load L_2 absorbs 4.8 kW at 0.8 p.f. leading. If $V_{SRC} = 200 \angle 0^\circ$ V rms at f = 50 Hz, determine the capacitor that must be connected in parallel with L_1 and L_2 to have maximum magnitude of current through the source.

+

- A. 0.67 mF
- B. 0.55 mF
- C. 0.34 mF
- D. 0.46 mF
- E. 1.24 mF

Solution: The reactive power absorbed by L_1 is 15×0.8 kVAR = 12 kVAR, whereas the reactive power absorbed by L_2 is $-\frac{4.8}{0.8} \times 0.6 = -3.6$ kVAR. For maximum magnitude of source current, the p.f. should be unity. The capacitor must add a reactive power of -(12 – 3.6) = -8400 VAR. hence, $-8400 = -\omega C \times |\mathbf{V}_{SRC}|^2$, or $C = \frac{8400}{100\pi |\mathbf{V}_{SRC}|^2} = \frac{84}{\pi |\mathbf{V}_{SRC}|^2}$.

Version 1: $|V_{SRC}| = 200 \text{ V}, C = \frac{84}{\pi (200)^2} \equiv 0.67 \text{ mF}$

Version 2: $|V_{SRC}| = 220 \text{ V}, C = \frac{84}{\pi (220)^2} \equiv 0.55 \text{ mF}$

- **Version 3:** $|V_{SRC}| = 240 \text{ V}, C = \frac{84}{\pi (240)^2} \equiv 0.46 \text{ mF}$
- **Version 4:** $|V_{SRC}| = 260 \text{ V}, C = \frac{84}{\pi (200)^2} \equiv 0.40 \text{ mF}$

Version 5:
$$|V_{SRC}| = 280 \text{ V}, C = \frac{84}{\pi (200)^2} \equiv 0.34 \text{ mF}$$

3%

- 14. A periodic current is shown, where over a period,
 - $i = 6 + A \sin 2t$ $0 \le t \le \pi$
 - $i = -4 + A \sin 2(t \pi)$ $\pi 0 \le t \le 2\pi$

Determine the rms value of *i* if A = 1 A.

- A. 5.83 A
- B. 5.15 A
- C. 6.20 A
- D. 5.29 A
- E. 5.52 A

Solution: The waveform consists of three components: i) a dc component of 1 A, ii) a square wave of 5 V amplitude, and iii) a sinusoidal wave of amplitude *A*. It follows that the rms value is $I = \sqrt{1^2 + 5^2 + A^2/2} = \sqrt{26 + A^2/2}$ A Version 1: A = 1; $I = \sqrt{26 + A^2/2} = \sqrt{26.5} = 5.15$ A Version 2: A = 2; $I = \sqrt{26 + A^2/2} = \sqrt{28} = 5.29$ A Version 3: A = 3; $I = \sqrt{26 + A^2/2} = \sqrt{30.5} = 5.52$ A Version 4: A = 4; $I = \sqrt{26 + A^2/2} = \sqrt{34} = 5.83$ A Version 5: A = 5; $I = \sqrt{26 + A^2/2} = \sqrt{38.5} = 6.20$ A.

3%

15. The current waveform of the preceding problem is applied to a 2 Ω resistor in parallel with a very large capacitor. Determine the voltage across the parallel combination.

A. 2.5 V

- B. 2 V
- C. 3 V
- D. 4 V
- E. 3.5 V

Solution: The ac voltage will be negligibly small. The dc voltage is the dc component of current multiplied by *R*, or $V = 1 \times R$.

Version 1: $R = 2 \Omega$; V = R = 2 VVersion 2: $R = 2.5 \Omega$; V = R = 2.5 VVersion 3: $R = 3 \Omega$; V = R = 3 VVersion 4: $R = 3.5 \Omega$; V = R = 3.5 VVersion 5: $R = 4 \Omega$; V = R = 4 V

11%

16. The period of a periodic function f(t) is defined as:

 $f(t) = \cos(t + \pi) - 2, \qquad -\pi < t < -\pi/2$ $f(t) = -\cos(t) + k, \qquad -\pi/2 < t < +\pi/2$ $f(t) = \cos(t - \pi) - 2, \qquad \pi/2 < t < \pi$

Derive the trigonometric Fourier series expansion of

f(t), assuming k = 3.

Solution:

$$\begin{aligned} a_{0} &= \frac{1}{\pi} \left[\int_{0}^{\pi/2} (-\cos t + k) dt + \int_{\pi/2}^{\pi} (\cos(t - \pi) - 2) dt \right] = \\ \frac{1}{\pi} \left[k \int_{0}^{\pi/2} dt - 2 \int_{\pi/2}^{\pi} dt - \int_{0}^{\pi/2} \cos t dt - \int_{\pi/2}^{\pi} \cos t dt \right] = \frac{1}{\pi} \left[k \int_{0}^{\pi/2} dt - 2 \int_{\pi/2}^{\pi} dt \right] = \frac{1}{\pi} \left[\frac{k\pi}{2} - \pi \right] = \frac{k}{2} - 1. \\ a_{n} &= \frac{2}{\pi} \left[\int_{0}^{\pi/2} (-\cos t + k) \cos nt dt + \int_{\pi/2}^{\pi} (\cos(t - \pi) - 2) \cos nt dt \right] = \\ \frac{2}{\pi} \left[- \int_{0}^{\pi} \cos t \cos nt dt + \int_{0}^{\pi/2} k \cos nt dt - \int_{\pi/2}^{\pi} 2 \cos nt dt \right] = \\ \frac{2}{\pi} \left[- \int_{0}^{\pi} \cos(t \cos nt dt) + \int_{0}^{\pi/2} k \cos(t - \pi) dt + k \int_{0}^{\pi/2} k \cos nt dt \right] = \\ \frac{2}{\pi} \left[- \frac{1}{2} \int_{0}^{\pi} \cos(t - 1) t dt - \frac{1}{2} \int_{0}^{\pi} \cos(t - 1) t dt + k \int_{0}^{\pi/2} k \cos nt dt - 2 \int_{\pi/2}^{\pi} \cos nt dt \right] = \\ - \frac{1}{\pi} \left[\frac{\sin(t - 1)t}{t - 1} + \frac{\sin(t - 1)t}{t - 1} \right]_{0}^{\pi} + \frac{2k}{n\pi} [\sin nt]_{0}^{\pi/2} - \frac{4}{n\pi} [\sin nt]_{\pi/2}^{\pi} = \\ 0 - 0 + \frac{2k}{n\pi} \sin \frac{n\pi}{2} - 0 - 0 + \frac{4}{n\pi} \sin \frac{n\pi}{2} = \frac{2(k + 2)}{n\pi} \sin \frac{n\pi}{2} \cdot a_{n} \text{ is zero for even values, and} \end{aligned}$$

the

f(t)

odd harmonics alternate in sign. Thus,

$$f(t) = \left(\frac{k}{2} - 1\right)\frac{1}{2} + \frac{2(k+2)}{\pi} \left(\cos t - \frac{1}{3}\cos 3t + \frac{1}{5}\cos 5t - \frac{1}{7}\cos 7t + ...\right)$$
Version 1: $k = 3$, $f(t) = \frac{1}{2} + \frac{10}{\pi} \left(\cos t - \frac{1}{3}\cos 3t + \frac{1}{5}\cos 5t - \frac{1}{7}\cos 7t + ...\right)$
Version 2: $k = 4$, $f(t) = 1 + \frac{12}{\pi} \left(\cos t - \frac{1}{3}\cos 3t + \frac{1}{5}\cos 5t - \frac{1}{7}\cos 7t + ...\right)$
Version 3: $k = 5$, $f(t) = \frac{3}{2} + \frac{14}{\pi} \left(\cos t - \frac{1}{3}\cos 3t + \frac{1}{5}\cos 5t - \frac{1}{7}\cos 7t + ...\right)$
Version 4: $k = 6$, $f(t) = 2 + \frac{16}{\pi} \left(\cos t - \frac{1}{3}\cos 3t + \frac{1}{5}\cos 5t - \frac{1}{7}\cos 7t + ...\right)$
Version 5: $k = 7$, $f(t) = \frac{5}{2} + \frac{18}{\pi} \left(\cos t - \frac{1}{3}\cos 3t + \frac{1}{5}\cos 5t - \frac{1}{7}\cos 7t + ...\right)$

11%

17. Given v_{SRC} = cost V and i_{SRC} = sin2t A.
6% (a) Derive the expression for i_X in the time domain.

5% (b) Determine the power dissipated in the resistor.

Solution: (a) Let the amplitude of v_{SRC} and i_{SRC} be *K*. With the current source replaced by an open circuit, $\mathbf{I}_{\mathbf{x}1} = \frac{K \ge 0^{\circ}}{1} \frac{1}{1+j} = \frac{K}{2}(1-j)$; $i_{\mathbf{x}1} = \frac{K}{\sqrt{2}}\cos(t-45^{\circ})$ A. With the current source replaced by a short circuit, $\mathbf{I}_{\mathbf{x}2} = K \ge 0^{\circ} \frac{j2}{1+j2} = \frac{2K}{\sqrt{5}} \ge (90^{\circ} - \tan^{-1} 2)$; $i_{\mathbf{x}2} = \frac{2K}{\sqrt{5}}\sin(2t+26.57^{\circ})$ A. Hence, $i_{\mathbf{x}} = \frac{K}{\sqrt{2}}\cos(t-45^{\circ}) + \frac{2K}{\sqrt{5}}\sin(2t+26.57^{\circ})$ A. (b) Power dissipated is $P = \frac{1}{2}\left(\frac{K^2}{2} + \frac{4K^2}{5}\right) = 0.65K^2$ W. **Version 1:** K = 1, $0.71\cos(t-45^{\circ}) + 0.89\sin(2t+26.57^{\circ})$ A, P = 0.65 W **Version 2:** K = 2, $1.14\cos(t-45^{\circ}) + 1.79\sin(2t+26.57^{\circ})$ A, P = 2.60 W **Version 3:** K = 3, $2.12\cos(t-45^{\circ}) + 2.68\sin(2t+26.57^{\circ})$ A, P = 5.85 W **Version 4:** K = 4, $2.83\cos(t-45^{\circ}) + 3.58\sin(2t+26.57^{\circ})$ A, P = 10.4 W **Version 5:** K = 5, $3.54\cos(t-45^{\circ}) + 4.47\sin(2t+26.57^{\circ})$ A, P = 16.25 W

11%

- 18. Given the circuit shown, with a = 1.
- 3% (a) Determine the current in the capacitor
- 2% (b) Replace the capacitor by a current source, in accordance with the substitution theorem
- 3% (c) Rearrange the current source as two current sources across the transformer windings

3% (d) Determine I_{SRC}.

Solution: (a) The voltage across the capacitor is 5(1 + a) V. The current through the capacitor is j5(1 + a) A directed from primary to secondary.

(b)

(d) It follows that $I_{SRC} = j5(a + 1)^2 A$. Version 1: a = 2, $I_{SRC} = j5(2 + 1)^2 = j45$ A Version 2: a = 3, $I_{SRC} = j5(3 + 1)^2 = j80$ A Version 3: a = 4, $I_{SRC} = j5(4 + 1)^2 = j125$ A Version 4: a = 5, $I_{SRC} = j5(5 + 1)^2 = j180$ A Version 5: a = 6, $I_{SRC} = i5(6 + 1)^2 = i245$ A

11%

19. Determine X and R for maximum power transfer to R and calculate this power. Assume $V_{SRC} = 4 \angle 0^{\circ}$ V rms.

Solution: On open circuit, $V_{TH} = V = V_{SRC}$. On short circuit, $\mathbf{V} = 0$ and $\mathbf{I}_{\mathbf{N}} = \mathbf{I} = \frac{\mathbf{V}_{\text{sRc}}}{5(1+i)}$. $Y_N =$ $\frac{1}{5(1+i)} = 0.1(1-i)$ S. For maximum power transfer, $G_L = 0.1$ S, or $R = 10 \Omega$, and B = 0.1 S, or $X = -10 \ \Omega$. Under conditions of maximum power transfer, the current in R is $0.5|\mathbf{I}_{N}| = \frac{0.5|\mathbf{V}_{SRC}|}{10}$ and the power transferred is $\frac{0.25 |\mathbf{V}_{SRC}|^2}{10} =$ $\frac{|\mathbf{V}_{\mathsf{SRC}}|^2}{40} \text{ W.}$ Version 1: $V_{SRC} = 4 \angle 0^{\circ}$ rms, $P = \frac{16}{40} = 0.4$ W Version 2: $V_{SRC} = 5 \angle 0^{\circ}$ rms, $P = \frac{25}{40} = 0.625$ W **Version 3:** $V_{SRC} = 6 \angle 0^{\circ}$ rms, $P = \frac{36}{40} = 0.9$ W **Version 4:** $V_{SRC} = 7 \angle 0^{\circ}$ rms, $P = \frac{49}{40} = 1.225$ W Version 5: $V_{SRC} = 8 \angle 0^{\circ}$ rms, $P = \frac{64}{40} = 1.6$ W.

11%

(15 + k)/2 + ik/2 V.

20. Determine the complex power delivered by each source given that $V_{SRC} = 5\cos\omega t$, $I_{SRC} = -2\sin\omega t$, and assuming $Z_L = k(1 - j)$ where k = 1. **Solution:** The currents and voltages are as shown. Equating mmfs: $100 \times 2 \angle 90^\circ + 200I_L = 0$, or $j2 = -2I_L$, and $I_L = -j A$, $I_1 = I_L - j2 = -j3 A$. $V_L = Z_L I_L = -jk(1 - j) = -k(1 + j) \vee V_2 = V_L - 5 = -(k + 5) - jk$. $V_1 = V_2/2 = -(k + 5)/2 - jk/2 \vee V_1 = 5 - V_1 =$

Power delivered by voltage source = $S_v = \frac{V_{src}}{\sqrt{2}} \frac{I_1^*}{\sqrt{2}} = \frac{1}{2} (5) (j3) = \frac{j15}{2}$ VA

Power delivered by current source $S_l =$

$$\frac{V_{I}}{\sqrt{2}} \frac{I_{SRC}^{*}}{\sqrt{2}} = \frac{1}{2} \left(\frac{15+k}{2} + \frac{jk}{2} \right) (-j2) = \frac{1}{2} \left(k - j(15+k) \right) \text{ VA}$$

Total power delivered by sources =

$$\frac{1}{2}(j15 + k - j15 - jk)) = \frac{k}{2}(1 - j)$$

As a check, $S_L =$

$$\frac{V_{Lm}}{\sqrt{2}}\frac{I_{Lm}^*}{\sqrt{2}} = \frac{1}{2}(-jk(1-j))(j) = \frac{k}{2}(1-j) \text{ VA}.$$

Version 1: k = 1, $S_v = j7.5$ VA; $S_l = 0.5 - j8$ VA Version 2: k = 2, $S_v = j7.5$ VA; $S_l = 1 - j8.5$ VA Version 3: k = 3, $S_v = j7.5$ VA; $S_l = 1.5 - j9$ VA Version 4: k = 4, $S_v = j7.5$ VA; $S_l = 2 - j9.5$ VA Version 5: k = 5, $S_v = j7.5$ VA; $S_l = 2.5 - j10$ VA

